Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Eur J Med Chem ; 271: 116414, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38677061

RESUMEN

Sclerostin is a secreted glycoprotein that expresses predominantly in osteocytes and inhibits bone formation by antagonizing the Wnt/ß-catenin signaling pathway, and the loop3 region of sclerostin has recently discovered as a novel therapeutic target for bone anabolic treatment without increasing cardiovascular risk. Herein, we used a structural based virtual screening to search for small molecular inhibitors selectively targeting sclerostin loop3. A novel natural product hit ZINC4228235 (THFA) was identified as the sclerostin loop3-selective inhibitor with a Kd value of 42.43 nM against sclerostin loop3. The simplification and derivation of THFA using molecular modeling-guided modification allowed the discovery of an effective and loop3-selective small molecular inhibitor, compound (4-(3-acetamidoprop-1-yn-1-yl)benzoyl)glycine (AACA), with improved binding affinity (Kd = 15.4 nM) compared to the hit THFA. Further in-vitro experiment revealed that compound AACA could attenuate the suppressive effect of transfected sclerostin on Wnt signaling and bone formation. These results make AACA as a potential candidate for development of anti-osteoporosis agents without increasing cardiovascular risk.

2.
Mol Ther Nucleic Acids ; 35(1): 102146, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38444701

RESUMEN

Osteogenesis imperfecta (OI) is a rare genetic disease characterized by bone fragility and bone formation. Sclerostin could negatively regulate bone formation by antagonizing the Wnt signal pathway, whereas it imposes severe cardiac ischemic events in clinic. Our team has screened an aptamer that could promote bone anabolic potential without cardiovascular risk. However, the affinity of the aptamer is lower and needs to be improved. In the study, hydrophobic quinoline molecule with unique orientations (seven subtypes) were incorporated into key sites of a bone anabolic aptamer against sclerostin to form a modified aptamer library. Among all the quinoline modifications, 5-quinoline modification could shape the molecular recognition of modified aptamers to sclerostin to facilitate enhancing its binding to sclerostin toward the highest affinity by interacting with newly participated binding sites in sclerostin. Further, 5-quinoline modification could facilitate the modified aptamer attenuating the suppressed effect of the transfected sclerostin on both Wnt signaling and bone formation marker expression levels in vitro, promoting bone anabolism in OI mice (Col1a2+/G610C). The proposed quinoline-oriented modification strategy could shape the molecular recognition of modified aptamers to proteins to facilitate enhancing its binding affinity and therapeutic potency.

3.
Mol Ther Nucleic Acids ; 34: 102073, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38074899

RESUMEN

The molecular weight of nucleic acid aptamers (20 kDa) is lower than the cutoff threshold of the renal filtration (30-50 kDa), resulting in a very short half-life, which dramatically limits their druggability. To address this, we utilized 3-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-N-(4-hydroxy-2-oxo-2H-chromen-6-yl)propenamide (HC) and 12-((2,5-dioxopyrrolidin-1-yl)oxy)-12-oxododecanoic acid (DA), two newly designed coupling agents, for synergistic binding to human serum albumin (HSA). Both HC and DA are conjugated to a bone anabolic aptamer (Apc001) against sclerostin to form an Apc001OC conjugate with high binding affinity to HSA. Notably, HC and DA could synergistically facilitate prolonging the half-life of the conjugated Apc001 and promoting its bone anabolic potential. Using the designed blocking peptides, the mechanism studies indicate that the synergistic effect of HC-DA on pharmacokinetics and bone anabolic potential of the conjugated Apc001 is achieved via their synergistic binding to HSA. Moreover, biweekly Apc001OC at 50 mg/kg shows comparable bone anabolic potential to the marketed sclerostin antibody given weekly at 25 mg/kg. This proposed bimolecular modification strategy could help address the druggability challenge for aptamers with a short half-life.

4.
Mol Ther Nucleic Acids ; 33: 144-163, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37456777

RESUMEN

Nucleic acid amphiphiles, referring to nucleic acids modified with large hydrophobic groups, have been widely used in programmable bioengineering. Since nucleic acids are intrinsically hydrophilic, the hydrophobic groups endow nucleic acid amphiphiles with unique properties, such as self-assembling, interactions with artificial or biological membranes, and transmembrane transport. Importantly, the hybridization or target binding capability of oligonucleotide itself supplies nucleic acid amphiphiles with excellent programmability. As a result, this type of molecule has attracted considerable attention in academic studies and has enormous potential for further applications. For a comprehensive understanding of nucleic acid amphiphiles, we review the reported research on nucleic acid amphiphiles from their molecular design to final applications, in which we summarize the synthetic strategies for nucleic acid amphiphiles and draw much attention to their unique properties in different contexts. Finally, a summary of the applications of nucleic acid amphiphiles in drug development, bioengineering, and bioanalysis are critically discussed.

5.
Biochem Pharmacol ; 215: 115694, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37481136

RESUMEN

Lipid and glucose metabolism are critical for human activities, and their disorders can cause diabetes and obesity, two prevalent metabolic diseases. Studies suggest that the bone involved in lipid and glucose metabolism is emerging as an endocrine organ that regulates systemic metabolism through bone-derived molecules. Sclerostin, a protein mainly produced by osteocytes, has been therapeutically targeted by antibodies for treating osteoporosis owing to its ability to inhibit bone formation. Moreover, recent evidence indicates that sclerostin plays a role in lipid and glucose metabolism disorders. Although the effects of sclerostin on bone have been extensively examined and reviewed, its effects on systemic metabolism have not yet been well summarized. In this paper, we provide a systemic review of the effects of sclerostin on lipid and glucose metabolism based on in vitro and in vivo evidence, summarize the research progress on sclerostin, and prospect its potential manipulation for obesity and diabetes treatment.


Asunto(s)
Trastornos del Metabolismo de la Glucosa , Proteínas , Humanos , Obesidad , Glucosa , Lípidos
6.
RNA Biol ; 20(1): 384-397, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37337437

RESUMEN

In the past two decades, machine learning (ML) has been extensively adopted in protein-targeted small molecule (SM) discovery. Once trained, ML models could exert their predicting abilities on large volumes of molecules within a short time. However, applying ML approaches to discover RNA-targeted SMs is still in its early stages. This is primarily because of the intrinsic structural instability of RNA molecules that impede the structure-based screening or designing of RNA-targeted SMs. Recently, with more studies revealing RNA structures and a growing number of RNA-targeted ligands being identified, it resulted in an increased interest in the field of drugging RNA. Undeniably, intracellular RNA is much more abundant than protein and, if successfully targeted, will be a major alternative target for therapeutics. Therefore, in this context, as well as under the premise of having RNA-related research data, ML-based methods can get involved in improving the speed of traditional experimental processes. [Figure: see text].


Asunto(s)
Descubrimiento de Drogas , ARN , ARN/genética , Descubrimiento de Drogas/métodos , Aprendizaje Automático , Proteínas
8.
Front Cell Dev Biol ; 11: 1091809, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36910146

RESUMEN

Nucleic acid aptamers are ssDNA or ssRNA fragments that specifically recognize targets. However, the pharmacodynamic properties of natural aptamers consisting of 4 naturally occurring nucleosides (A, G, C, T/U) are generally restricted for inferior binding affinity than the cognate antibodies. The development of high-affinity modification strategies has attracted extensive attention in aptamer applications. Chemically modified aptamers with stable three-dimensional shapes can tightly interact with the target proteins via enhanced non-covalent bonding, possibly resulting in hundreds of affinity enhancements. This review overviewed high-affinity modification strategies used in aptamers, including nucleobase modifications, fluorine modifications (2'-fluoro nucleic acid, 2'-fluoro arabino nucleic acid, 2',2'-difluoro nucleic acid), structural alteration modifications (locked nucleic acid, unlocked nucleic acid), phosphate modifications (phosphorothioates, phosphorodithioates), and extended alphabets. The review emphasized how these high-affinity modifications function in effect as the interactions with target proteins, thereby refining the pharmacodynamic properties of aptamers.

9.
Front Cell Dev Biol ; 10: 1048148, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36393853

RESUMEN

Aptamers are short, single-stranded DNA or RNA oligonucleotide sequences that can bind specific targets. The molecular weight of aptamers (<20 kDa) is lower than the renal filtration threshold (30∼50 kDa), resulting in very short half-lives in vivo, which limit their druggability. The development of long-lasting modification approaches for aptamers can help address the druggability bottleneck of aptamers. This review summarized two distinct kinds of long-lasting modification approaches for aptamers, including macromolecular modification and low-molecular-weight modification. Though it is a current approach to extend the half-life of aptamers, the macromolecular modification approach could limit the space for the dosage increases, thus causing potential compliance concerns due to large molecular weight. As for the other modification approach, the low-molecular-weight modification approach, which uses low molecular weight coupling agents (LMWCAs) to modify aptamers, could greatly increase the proportion of aptamer moiety. However, some LMWCAs could bind to other proteins, causing a decrease in the drug amounts in blood circulation. Given these issues, the outlook for the next generation of long-lasting modification approaches was proposed at the end, including improving the administration method to increase dosage for aptamer drugs modified by macromolecule and developing Artificial intelligence (AI)-based strategies for optimization of LMWCAs.

10.
Theranostics ; 12(13): 5645-5674, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966595

RESUMEN

Rationale: Sclerostin inhibition demonstrated bone anabolic potential in osteogenesis imperfecta (OI) mice, whereas humanized therapeutic sclerostin antibody romosozumab for postmenopausal osteoporosis imposed clinically severe cardiac ischemic events. Therefore, it is desirable to develop the next generation sclerostin inhibitors to promote bone formation without increasing cardiovascular risk for OI. Methods and Results: Our data showed that sclerostin suppressed inflammatory responses, prevented aortic aneurysm (AA) and atherosclerosis progression in hSOSTki.Col1a2+/G610C.ApoE-/- mice. Either loop2&3 deficiency or inhibition attenuated sclerostin's suppressive effects on expression of inflammatory cytokines and chemokines in vitro, whilst loop3 deficiency maintained the protective effect of sclerostin on cardiovascular system both in vitro and in vivo. Moreover, loop3 was critical for sclerostin's antagonistic effect on bone formation in Col1a2+/G610C mice. Accordingly, a sclerostin loop3-specific aptamer aptscl56 was identified by our lab. It could recognize both recombinant sclerostin and sclerostin in the serum of OI patients via targeting loop3. PEG40k conjugated aptscl56 (Apc001PE) demonstrated to promote bone formation, increase bone mass and improve bone microarchitecture integrity in Col1a2+/G610C mice via targeting loop3, while did not show influence in inflammatory response, AA and atherosclerosis progression in Col1a2+/G610C.ApoE-/- mice with Angiotensin II infusion. Further, Apc001PE had no influence in the protective effect of sclerostin on cardiovascular system in hSOSTki.Col1a2+/G610C.ApoE-/- mice, while it inhibited the antagonistic effect of sclerostin on bone formation in hSOSTki.Col1a2+/G610C mice via targeting loop3. Apc001PE was non-toxic to healthy rodents, even at ultrahigh dose. Apc001PE for OI was granted orphan drug designation by US-FDA in 2019 (DRU-2019-6966). Conclusion: Sclerostin loop3-specific aptamer Apc001PE promoted bone formation without increasing cardiovascular risk in OI mice.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Osteogénesis Imperfecta , Animales , Apolipoproteínas E , Modelos Animales de Enfermedad , Factores de Riesgo de Enfermedad Cardiaca , Ratones , Oligonucleótidos , Osteogénesis , Osteogénesis Imperfecta/tratamiento farmacológico , Osteogénesis Imperfecta/metabolismo , Factores de Riesgo
11.
Nat Commun ; 13(1): 4241, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869074

RESUMEN

Sclerostin negatively regulates bone formation by antagonizing Wnt signalling. An antibody targeting sclerostin for the treatment of postmenopausal osteoporosis was approved by the U.S. Food and Drug Administration, with a boxed warning for cardiovascular risk. Here we demonstrate that sclerostin participates in protecting cardiovascular system and inhibiting bone formation via different loops. Loop3 deficiency by genetic truncation could maintain sclerostin's protective effect on the cardiovascular system while attenuating its inhibitory effect on bone formation. We identify an aptamer, named aptscl56, which specifically targets sclerostin loop3 and use a modified aptscl56 version, called Apc001PE, as specific in vivo pharmacologic tool to validate the above effect of loop3. Apc001PE has no effect on aortic aneurysm and atherosclerotic development in ApoE-/- mice and hSOSTki.ApoE-/- mice with angiotensin II infusion. Apc001PE can promote bone formation in hSOSTki mice and ovariectomy-induced osteoporotic rats. In summary, sclerostin loop3 cannot participate in protecting the cardiovascular system, but participates in inhibiting bone formation.


Asunto(s)
Sistema Cardiovascular , Osteogénesis , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Apolipoproteínas E , Densidad Ósea , Proteínas Morfogenéticas Óseas/metabolismo , Sistema Cardiovascular/metabolismo , Femenino , Marcadores Genéticos , Humanos , Ratones , Ratas
12.
Acta Pharm Sin B ; 12(5): 2150-2170, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35646527

RESUMEN

Sclerostin, a protein secreted from osteocytes, negatively regulates the WNT signaling pathway by binding to the LRP5/6 co-receptors and further inhibits bone formation and promotes bone resorption. Sclerostin contributes to musculoskeletal system-related diseases, making it a promising therapeutic target for the treatment of WNT-related bone diseases. Additionally, emerging evidence indicates that sclerostin contributes to the development of cancers, obesity, and diabetes, suggesting that it may be a promising therapeutic target for these diseases. Notably, cardiovascular diseases are related to the protective role of sclerostin. In this review, we summarize three distinct types of inhibitors targeting sclerostin, monoclonal antibodies, aptamers, and small-molecule inhibitors, from which monoclonal antibodies have been developed. As the first-in-class sclerostin inhibitor approved by the U.S. FDA, the monoclonal antibody romosozumab has demonstrated excellent effectiveness in the treatment of postmenopausal osteoporosis; however, it conferred high cardiovascular risk in clinical trials. Furthermore, romosozumab could only be administered by injection, which may cause compliance issues for patients who prefer oral therapy. Considering these above safety and compliance concerns, we therefore present relevant discussion and offer perspectives on the development of next-generation sclerostin inhibitors by following several ways, such as concomitant medication, artificial intelligence-based strategy, druggable modification, and bispecific inhibitors strategy.

13.
Bio Protoc ; 12(5): e4338, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35592608

RESUMEN

Osteoclast lineage cells (OLCs), including osteoclast precursors (OCPs) and mature osteoclasts (MOCs), participate in bone remodeling and mediate pathologic bone loss. Thus, it is essential to obtain OLCs for exploring their molecular features in both physiological and pathological conditions in vivo. However, the conventional protocols for obtaining OLCs ex vivo are not only time-consuming, but also unable to capture the cellular status of OLCs in vivo. In addition, the current antibody-based isolation approaches, such as fluorescence-/ magnetic-activated cell sorting, are not able to obtain pure osteoclasts because no unique surface antigen for osteoclasts has been identified. Here, we develop a rapid protocol for directly isolating OLCs from mouse bone marrow through magnetic-activated cell sorting (MACS). This protocol can rapidly enrich OCPs and MOCs, respectively, depending on the expression of the distinctive surface markers at their differentiation stages. It is optimized to isolate OLCs from four mice concurrently, of which sorting procedure could be completed within ~5 h.

14.
Front Pharmacol ; 13: 847387, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35355709

RESUMEN

Dickkopf-1 (DKK1) is a well-characterized Wnt inhibitor and component of the Wnt/ß-catenin signaling pathway, whose dysregulation is associated with multiple abnormal pathologies including osteoporosis, Alzheimer's disease, diabetes, and various cancers. The Wnt signaling pathway has fundamental roles in cell fate determination, cell proliferation, and survival; thus, its mis-regulation can lead to disease. Although DKK1 is involved in other signaling pathways, including the ß-catenin-independent Wnt pathway and the DKK1/CKAP4 pathway, the inhibition of DKK1 to propagate Wnt/ß-catenin signals has been validated as an effective way to treat related diseases. In fact, strategies for developing DKK1 inhibitors have produced encouraging clinical results in different pathological models, and many publications provide detailed information about these inhibitors, which include small molecules, antibodies, and nucleic acids, and may function at the protein or mRNA level. However, no systematic review has yet provided an overview of the various aspects of their development and prospects. Therefore, we review the DKK1 inhibitors currently available or under study and provide an outlook on future studies involving DKK1 and drug discovery.

15.
Front Cell Dev Biol ; 9: 689533, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34490244

RESUMEN

Duchenne muscular dystrophy (DMD) is a lethal, X-linked neuromuscular disorder caused by the absence of dystrophin protein, which is essential for muscle fiber integrity. Loss of dystrophin protein leads to recurrent myofiber damage, chronic inflammation, progressive fibrosis, and dysfunction of muscle stem cells. There is still no cure for DMD so far and the standard of care is principally limited to symptom relief through glucocorticoids treatments. Current therapeutic strategies could be divided into two lines. Dystrophin-targeted therapeutic strategies that aim at restoring the expression and/or function of dystrophin, including gene-based, cell-based and protein replacement therapies. The other line of therapeutic strategies aims to improve muscle function and quality by targeting the downstream pathological changes, including inflammation, fibrosis, and muscle atrophy. This review introduces the important developments in these two lines of strategies, especially those that have entered the clinical phase and/or have great potential for clinical translation. The rationale and efficacy of each agent in pre-clinical or clinical studies are presented. Furthermore, a meta-analysis of gene profiling in DMD patients has been performed to understand the molecular mechanisms of DMD.

16.
Front Immunol ; 12: 658097, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093545

RESUMEN

Clinical studies in a range of cancers have detected elevated levels of the Wnt antagonist Dickkopf-1 (DKK1) in the serum or tumors of patients, and this was frequently associated with a poor prognosis. Our analysis of DKK1 gene profile using data from TCGA also proves the high expression of DKK1 in 14 types of cancers. Numerous preclinical studies have demonstrated the cancer-promoting effects of DKK1 in both in vitro cell models and in vivo animal models. Furthermore, DKK1 showed the ability to modulate immune cell activities as well as the immunosuppressive cancer microenvironment. Expression level of DKK1 is positively correlated with infiltrating levels of myeloid-derived suppressor cells (MDSCs) in 20 types of cancers, while negatively associated with CD8+ T cells in 4 of these 20 cancer types. Emerging experimental evidence indicates that DKK1 has been involved in T cell differentiation and induction of cancer evasion of immune surveillance by accumulating MDSCs. Consequently, DKK1 has become a promising target for cancer immunotherapy, and the mechanisms of DKK1 affecting cancers and immune cells have received great attention. This review introduces the rapidly growing body of literature revealing the cancer-promoting and immune regulatory activities of DKK1. In addition, this review also predicts that by understanding the interaction between different domains of DKK1 through computational modeling and functional studies, the underlying functional mechanism of DKK1 could be further elucidated, thus facilitating the development of anti-DKK1 drugs with more promising efficacy in cancer immunotherapy.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neoplasias/etiología , Neoplasias/metabolismo , Animales , Biomarcadores de Tumor , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Regulación Neoplásica de la Expresión Génica , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunomodulación , Péptidos y Proteínas de Señalización Intercelular/química , Terapia Molecular Dirigida , Neoplasias/terapia , Pronóstico , Transducción de Señal , Relación Estructura-Actividad , Resultado del Tratamiento , Vía de Señalización Wnt , beta Catenina/metabolismo
17.
Int J Mol Sci ; 22(8)2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33920991

RESUMEN

Aptamers are promising therapeutic and diagnostic agents for various diseases due to their high affinity and specificity against target proteins. Structural determination in combination with multiple biochemical and biophysical methods could help to explore the interacting mechanism between aptamers and their targets. Regrettably, structural studies for aptamer-target interactions are still the bottleneck in this field, which are facing various difficulties. In this review, we first reviewed the methods for resolving structures of aptamer-protein complexes and for analyzing the interactions between aptamers and target proteins. We summarized the general features of the interacting nucleotides and residues involved in the interactions between aptamers and proteins. Challenges and perspectives in current methodologies were discussed. Approaches for determining the binding affinity between aptamers and target proteins as well as modification strategies for stabilizing the binding affinity of aptamers to target proteins were also reviewed. The review could help to understand how aptamers interact with their targets and how alterations such as chemical modifications in the structures affect the affinity and function of aptamers, which could facilitate the optimization and translation of aptamers-based theranostics.


Asunto(s)
Aptámeros de Nucleótidos/química , Proteínas/química , Ensayos Clínicos como Asunto , Humanos , Modelos Moleculares , Conformación Molecular , Unión Proteica , Proteínas/ultraestructura
18.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808496

RESUMEN

Aptamers are short single-stranded DNA, RNA, or synthetic Xeno nucleic acids (XNA) molecules that can interact with corresponding targets with high affinity. Owing to their unique features, including low cost of production, easy chemical modification, high thermal stability, reproducibility, as well as low levels of immunogenicity and toxicity, aptamers can be used as an alternative to antibodies in diagnostics and therapeutics. Systematic evolution of ligands by exponential enrichment (SELEX), an experimental approach for aptamer screening, allows the selection and identification of in vitro aptamers with high affinity and specificity. However, the SELEX process is time consuming and characterization of the representative aptamer candidates from SELEX is rather laborious. Artificial intelligence (AI) could help to rapidly identify the potential aptamer candidates from a vast number of sequences. This review discusses the advancements of AI pipelines/methods, including structure-based and machine/deep learning-based methods, for predicting the binding ability of aptamers to targets. Structure-based methods are the most used in computer-aided drug design. For this part, we review the secondary and tertiary structure prediction methods for aptamers, molecular docking, as well as molecular dynamic simulation methods for aptamer-target binding. We also performed analysis to compare the accuracy of different secondary and tertiary structure prediction methods for aptamers. On the other hand, advanced machine-/deep-learning models have witnessed successes in predicting the binding abilities between targets and ligands in drug discovery and thus potentially offer a robust and accurate approach to predict the binding between aptamers and targets. The research utilizing machine-/deep-learning techniques for prediction of aptamer-target binding is limited currently. Therefore, perspectives for models, algorithms, and implementation strategies of machine/deep learning-based methods are discussed. This review could facilitate the development and application of high-throughput and less laborious in silico methods in aptamer selection and characterization.


Asunto(s)
Aptámeros de Nucleótidos/farmacología , Predicción/métodos , Técnica SELEX de Producción de Aptámeros/métodos , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Inteligencia Artificial/tendencias , Simulación por Computador , Diseño Asistido por Computadora/tendencias , Ligandos , Simulación del Acoplamiento Molecular , Ácidos Nucleicos/química , Reproducibilidad de los Resultados
19.
Nat Aging ; 1(4): 368-384, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-37117596

RESUMEN

Osteoarthritis (OA) is a prevalent aging-related joint disease lacking disease-modifying therapies. Here, we identified an upregulation of circulating exosomal osteoclast (OC)-derived microRNAs (OC-miRNAs) during the progression of surgery-induced OA in mice. We found that reducing OC-miRNAs by Cre-mediated excision of the key miRNA-processing enzyme Dicer or blocking the secretion of OC-originated exosomes by short interfering RNA-mediated silencing of Rab27a substantially delayed the progression of surgery-induced OA in mice. Mechanistically, the exosomal transfer of OC-miRNAs to chondrocytes reduced the resistance of cartilage to matrix degeneration, osteochondral angiogenesis and sensory innervation during OA progression by suppressing tissue inhibitor of metalloproteinase-2 (TIMP-2) and TIMP-3. Furthermore, systemic administration of a new OC-targeted exosome inhibitor (OCExoInhib) blunted the progression of surgery-induced OA in mice. We suggest that targeting the exosomal transfer of OC-miRNAs to chondrocytes represents a potential therapeutic avenue to tackle OA progression.


Asunto(s)
MicroARNs , Osteoartritis , Animales , Ratones , MicroARNs/genética , Condrocitos , Inhibidor Tisular de Metaloproteinasa-2 , Osteoclastos , Osteoartritis/genética
20.
ACS Appl Mater Interfaces ; 13(8): 9500-9519, 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32603135

RESUMEN

Aptamers are oligonucleotide sequences with a length of about 25-80 bases which have abilities to bind to specific target molecules that rival those of monoclonal antibodies. They are attracting great attention in diverse clinical translations on account of their various advantages, including prolonged storage life, little batch-to-batch differences, very low immunogenicity, and feasibility of chemical modifications for enhancing stability, prolonging the half-life in serum, and targeted delivery. In this Review, we demonstrate the emerging aptamer discovery technologies in developing advanced techniques for producing aptamers with high performance consistently and efficiently as well as requiring less cost and resources but offering a great chance of success. Further, the diverse modifications of aptamers for therapeutic applications including therapeutic agents, aptamer-drug conjugates, and targeted delivery materials are comprehensively summarized.


Asunto(s)
Aptámeros de Nucleótidos/uso terapéutico , Portadores de Fármacos/química , Animales , Aptámeros de Nucleótidos/química , Ensayos Analíticos de Alto Rendimiento/instrumentación , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Dispositivos Laboratorio en un Chip , Liposomas/química , Nanopartículas del Metal/química , Péptidos/química , Técnica SELEX de Producción de Aptámeros/instrumentación , Técnica SELEX de Producción de Aptámeros/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...